Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 238: 451-459, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875643

RESUMO

Phosphorus scarcity has become a significant issue in the European Union (EU) during 21st Century, due to its relevance as an irreplaceable macronutrient for life, and because of the total dependency of EU regarding imports. This work aims to evaluate the phosphorus recovery by adsorption in batch and fixed-bed column, using a thermally modified eggshell as an adsorbent. The screening phase revealed that calcined eggshell at 700 °C (CES700) is the most suitable material compared with the other thermally modified eggshells tested. Thus, CES700 was characterized regarding the specific surface area, pore volume, zero-point charge pH, total dissolved solids and organic matter. The influence of pH and adsorbent dosage was investigated in batch conditions. Langmuir-Freundlich model described the equilibrium data and the maximum adsorption capacity was about 39 mg P-PO4/g. The kinetics follows a pseudo-first order model, with constants between 0.063 and 0.224 min-1. Fixed-bed studies indicated that increasing fluid superficial velocity and feed concentration led to an early saturation of the adsorbent. Yoon-Nelson, Thomas and Bohard-Adams empirical models properly adjusted the breakthrough curves with R2 ≥ 0.98. Germination tests using CES700 loaded with phosphate revealed a germination index of 120 and 124% to 48 and 72 h, respectively. CES700 is statically better than the other tested materials, which opens the possibility of its use as fertilizer. This study showed that the developed material, CES700, can be applied in batch or fixed-bed processes to recover phosphate ions from liquid effluents, and the loaded adsorbent has potential to be further used as fertilizer.


Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Animais , Casca de Ovo , Concentração de Íons de Hidrogênio , Cinética , Fósforo , Soluções , Água
2.
Environ Sci Pollut Res Int ; 25(28): 28039-28049, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066077

RESUMO

This study aims to investigate the single and binary biosorption of Cr(III) and Ni(II) by pine bark chemically treated with NaOH solution (MPB). The studies involved the effect of initial pH in the equilibrium, as well as kinetic uptake using synthetic solutions. Equilibrium tests were also conducted with an industrial effluent. The kinetic model of pseudo-second order described well the data of single and binary systems. The equilibrium data were better described by the Langmuir model for both metals. The maximum adsorption capacity (qmax) to single system was 31.4 and 23.7 mg/g for Cr(III) and Ni(II), respectively. To analyse the competitive sorption between chromium and nickel ions, the modified Langmuir and Freundlich models were tested for two different concentration (mEq/L) ratios Cr(III)/Ni(II) of 1:1 and 2:1. The modified Langmuir model is also the best to fit the experimental data for both syntetic and industrial effluents. In the synthetic effluent, the qmax value for Cr(III) in MPB was about 25 mg/g, while qmax for Ni(II) decreased from 12.4 to 5.5 mg/g. The results showed that Ni(II) did not significantly interfere in Cr(III) adsorption capacity, whereas Cr(III) decreased the uptake of Ni(II). The industrial effluent contains several species, and thus, the sorption capacities for Cr(III) and Ni(II) were significantly affected.


Assuntos
Cromo/análise , Resíduos Industriais/análise , Níquel/análise , Pinus/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Casca de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...